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Abstract—Nonnegative matrix factorization (NMF)
models are widely used to analyze linearly mixed non-
negative data. When the data is made of samplings
of continuous signals, the factors in NMF can be con-
strained to be samples of nonnegative rational func-
tions. This leads to a fairly general model referred to as
NMF using rational functions (R-NMF). We first show
that, unlike NMF, R-NMF possesses an essentially
unique factorization under mild assumptions, which is
crucial in applications where the ground-truth factors
need to be recovered, as in blind source separation
problems. Then we present different approaches to
solve R-NMF: the R-HANLS, R-ANLS and R-NLS
methods. In our tests, no method significantly outper-
forms the others in all cases, and all three methods
offer a different trade-off between solution accuracy and
computational requirements. Indeed, while R-HANLS
is fast and accurate for large problems, R-ANLS is
more accurate, but also more resources demanding,
both in time and memory and R-NLS is even more
accurate but only for small problems. Then, crucially
we show that R-NMF models outperforms NMF in
various tasks including the recovery of semi-synthetic
continuous signals, and a classification problem of real
hyperspectral signals.

Index Terms—nonnegative matrix factorization, block-
coordinate-descent, sampled signals, nonlinear least
squares, nonnegative rational functions, projection

I. Introduction
Linear dimension reduction techniques are simple but
powerful methods to reduce the size of a dataset while ex-
tracting meaningful information and filtering noise. When
the data is nonnegative, it is common to use nonnegative
matrix factorization (NMF). In NMF, the nonnegative
input data matrix Y is approximated by the product of
two nonnegative matrices, A and X, such that Y ≃ AX⊤.
The number r of columns of these two matrices is typically
much smaller than the dimensions of the input matrix,
leading to a compressed representation. This allows the
description of each column of Y as a nonnegative weighted
sum of r characteristic nonnegative elements, the columns
of A [27].

Nonnegativity constraints occur naturally in many situ-
ations, e.g., when recording intensities, occurrences, fre-
quencies, proportions, and probabilities. Imposing non-
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negativity in the factorization leads to more meaningful
decompositions: the basis formed by the column of A can
be interpreted in the same way as the data, while the input
matrix Y is reconstructed using only additive combina-
tions of these basis elements, which leads to a part-based
representation [27]. This explains the popularity of NMF
in various fields such as image processing, text mining,
blind source separation, and microarray data analysis;
see [8], [14] and the references therein.

To further improve the quality of the factorization and
be even less sensitive to noise, other constraints can be
considered on the factors A and X. For example, when
the data is smooth, one can consider that the columns of
A are discretizations of continuous nonnegative functions
like polynomials [11], splines [2], [39], [40], or mixture(s)
of Gaussian radial basis functions [38]. NMF can then
be solved in several ways, but an efficient approach is
to generalize the Hierarchical Alternating Least Squares
(HALS) algorithm [7] and solve the problem using block-
coordinate descent (BCD) with 2r blocks: the columns of
A and X. HALS requires to repeatedly project each block
on the considered set of nonnegative functions; for example
on nonnegative polynomials and splines [18].

When the columns of the input matrix Y are samples
of nonnegative continuous signals, mostly smooth with
possibly some peaks, it makes sense to consider that
they are samples of nonnegtive rational functions. Indeed,
when the denominator of a rational function is close to
zero, it results in a peak in the signal. In fact, rational
functions are able to represent a large range of shapes
and curves [22]. NMF over rational functions, R-NMF, has
been introduced in [20], and is recalled in Section II. In
Section III, we prove that unlike standard NMF, R-NMF
is essentially unique under mild conditions, which is very
important when the objective is to recover the sources that
generated the data.

In [20] it is shown that R-NMF leads to better factor-
ization and reconstruction than standard NMF on noisy
data. However, the set of nonnegative rational functions of
fixed degree is not convex, and the projection on it is not
easy to compute. Therefore, the problem is solved using
an HALS-like approach, named R-HANLS, that uses an
approximate projection method. We explore in Section V
other methods to approximately project on nonnegative
rational functions, with the goal to determine whether
some methods lead to better projections and/or if some
are more adapted for R-NMF, that is, lead to better
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factorizations.

One of the main advantages of HALS for standard NMF
is the simplicity of its iterations. However, when using
rational functions, each iteration is difficult due to the
projection. It is thus questionable whether this approach is
suitable, so we consider other block decompositions in Sec-
tion IV, the R-ANLS and R-NLS methods. These methods
are then analyzed and compared in Section VI, where we
find that R-HANLS is suited for large-scale data, while R-
ANLS obtains more accurate factorizations but is slower.
R-NLS is effective only for very small data. Moreover,
R-NMF is more accurate than NMF using polynomials,
splines or vectors on various datasets, like semi-synthetic
datasets containing mixture of real reflectance signals, and
on a real problem, the Indian Pines classification problem.

II. NMF using rational functions
Consider an input data matrix Y ∈ Rm×n, containing in
each of its columns the samples of a continuous signal
taken in m known discretization points τ = {τi}m

i=1 ⊂ R;
the sampling points need not to be equidistant. Let T
be the interval on which τ is defined: T = [τmin, τmax],
and Fd,T be the set of rational functions of degree d
nonnegative on T . The goal of R-NMF is to approximate
the columns of Y as a nonnegative linear combination of
r functions in Fd,T . However, as the input signals are
known only at points τ , to evaluate the quality of the
factorization, we focus on the discretization of Fd,T on
τ : Rd,T

τ = {f(τ )|f ∈ Fd,T } ⊂ Rm
+ , and use the Frobenius

norm ∥ · ∥F of the reconstruction error of Y as objective.

Definition 1 (R-NMF). Given an input matrix Y ∈
Rm×n, discretization points τ ∈ Rm, the set Rd,T

τ of ratio-
nal functions of degree d nonnegative on T and evaluated
on τ , and a factorization rank r ≥ 1, R-NMF aims to com-
pute a nonnegative matrix A ∈ Rm×r

+ containing elements
of Rd,T

τ in each of its columns, that is, A:j ∈ Rd,T
τ ∀j, and

a nonnegative matrix X ∈ Rn×r
+ solving

min
A:j∈Rd,T

τ ,X∈Rn×r
+

n∑
i=1

∥∥∥Y:i −
r∑

j=1
A:jXij

∥∥∥2

F
. (1)

The choice of rational functions is motivated by their
ability to represent a large range of shapes and their utility
in applications; they generalize polynomials or splines [35],
and they represent the natural way of modeling linear
dynamical systems in the frequency domain [22]. A ra-
tional function is defined as the ratio of two polynomials:
f(t) = h(t)

g(t) . Throughout this work, we consider univariate
rational functions with fixed degree d = (d1, d2), so that h
is of degree d1 and g of degree d2. As the degree is fixed,
the set of rational functions is not a vector space (e.g., it
is easy to check that 1

x + 1
x+1 is of degree (1, 2) and not

(1, 1)). Nevertheless, this set can be parametrized. Indeed,
a rational function nonnegative on a fixed interval can be
described as a ratio of two polynomials nonnegative on
the same interval [23], and nonnegative polynomials can

be parametrized using sums of squares [31]. Moreover, as
it is often undesirable for factors to tend to infinity, the
denominator is imposed to be nonzero in the considered
interval. More details are presented in [20]. For example a
rational function of degree d = (2d′

1, 2d′
2) nonnegative on

[−1, 1] can be written as:

f(t) = h2
1(t) + (1− t2)h2

2(t)
g2

1(t) + (1− t2)g2
2(t) + ϵ

(2)

with h1, h2, g1, g2 polynomials of degree d′
1, d′

1−1, d′
2, d′

2−1
respectively, and ϵ prevents the denominator from going
to 0. To evaluate f on points τ , we use the Vandermonde-
like matrix for the chosen basis of polynomials, V d

τ (in
our case, the Chebyshev basis). Using the coefficients
(h1, h2, g1, g2) ∈ Rd′

1+1×Rd′
1×Rd′

2+1×Rd′
2 we have

fτ (h1, h2,
g1, g2) = (V d′

1
τ h1)2 + (1− τ 2) · (V d′

1−1
τ h2)2

(V d′
2

τ g1)2 + (1− τ 2) · (V g′
2−1

τ g2)2 + ϵ
.

(3)
However, this representation is redundant, as multiplying
the numerator and the denominator by the same constant
leads to the same rational function. Therefore, we impose
the denominator g to be monic. It can be proven that this
condition is equivalent to imposing g1[d′

2+1] =
√

8+g2[d′
2]2

2 .

III. Uniqueness
In this section, we focus on exact factorizations Y = AX⊤.
In such a factorization, if the column A:i is scaled by a
factor αi while the column X:i is scaled by factor 1

αi
,

AX⊤ remains unchanged. Moreover, applying the same
permutation to the columns of A and X also keeps AX⊤

unchanged. This leads to the notion of essentially unique
factorizations.

Definition 2. The factorization Y = AX⊤ is said to
be essentially unique if all the factorizations of Y can
be obtained only using consistent permutations and scal-
ings/counterscaling of the columns of A and X.

As shown in Lemma 1, a matrix Y with unconstrained
factorization Y = AX⊤ admits an infinite number of other
unconstrained factorizations not resulting from permuta-
tions and scalings of A and X.

Lemma 1. Let Y = AX⊤, with A ∈ Rm×r, X ∈ Rn×r,
and rank(Y ) = r. Matrices A′ ∈ Rm×r and X ′ ∈ Rn×r

factorize Y if and only if A′ = AQ and X ′⊤ = Q−1X⊤

where Q ∈ Rr×r is an invertible matrix.

Proof. We omit the proof, which is quite straightforward.

To have an essentially unique factorization, we must add
constraints on A and/or X. In NMF, the factors A and X
are nonnegative. This constraint allows us, under certain
conditions, for an essentially unique factorization. How-
ever, these conditions are quite restrictive, and are not met
in general, see [13] and [14, Chap. 4] and the references
therein.
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If we consider that the columns of matrix A are sam-
ples of rational functions, it is possible to prove that
the factorization Y = AX⊤ is essentially unique under
certain conditions on the rational functions contained in
the columns of A [10]: at most one column can contain a
polynomial and the poles of all rational functions must be
distincts. The number of discretization points must also
be larger than twice the sum of the degrees of the rational
functions in A, for example m > 2r(d1 + d2) in R-NMF.

In R-NMF, the considered rational functions must be
nonnegative and of the same degrees. The exact R-NMF
problem described below is thus a special case of [10].
Theorem 1 shows that it is possible to ensure that exact
R-NMF is essentially unique with milder conditions on A.

Definition 3 (Exact R-NMF). Given Y ∈ Rm×n
+ , τ , Rd,T

τ

and r as in R-NMF, compute, if possible, A ∈ Rm×r
+ with

A:j ∈ Rd,T
τ for all j and X ∈ Rn×r

+ such that Y = AX⊤.

Let us introduce some useful lemmas. A rational function
f(t) of degree d = (d1, d2) can be written as:

f(t) =
α

∏d1
i=1(t− zi)∏d2

j=1(t− pj)
zi, pj ∈ C, zi ̸= pj ∀i, j, α ̸= 0, (4)

with Z={zi}d1
i=1 the zeros of f(t), and P={pj}d2

j=1 its poles,
including the complex zeros/poles. In case of multiple
poles, the poles are considered as distinct. For example, let
f1, f2 be two rational functions with poles P1={p1, p2, p3}
with p1=p2=p3 and P2 ={p1, p2} respectively. The set of
all poles is {p1, p2, p3} and the set of unique poles, that is,
poles appearing in exactly one function, is {p3}.

Lemma 2. Let {fl}r
l=1 be a collection of rational functions

in the form (4), with Pl = {plj}d2
j=1 holding the poles of fl

and Zl = {zli}d1
i=1 holding the zeros of fl. Let S = {sk}m

k=1
be the set of unique poles, that is, the poles appearing in
exactly one function.
Then any function f =

∑
l βlfl with βl ̸=0 has a denomina-

tor with degree at least equal to the cardinality of S (=m).

Proof. The function f can be written as:

f(t) =
∑

l βlαl

∏d1
i=1(t− zli)

∏
q∈U\Pl

(t− q)∏
q∈U (t− q) .

Let U be the set of all poles in {fl}r
l=1. We have S ⊆ U ,

and all sk are therefore potential poles of f . Let us check if
they can be simplified by the numerator or not. If sk ∈ S
is a pole appearing only in Pl, we have sk ∈ U \Pi ∀i ̸= l.
Therefore, when t = sk, only the lth term is non-zero in
the numerator. Moreover, sk /∈ U \Pl and sk ̸= zli ∀i as sk

is a pole of fl. The numerator is therefore nonzero when
t = sk and sk is a pole of f . As this is valid for all sk ∈ S,
rational function f has denominator degree at least equal
to the cardinality of S = m.

Lemma 3. Let {fl}r
l=1 be a collection of r rational func-

tions in form (4), of degree d = (d1, d2), and τ = {τi}m
i=1

be a set of distinct discretization points with m > d1 +rd2,

so that the denominators of functions fl do not cancel at
these points. If there exist a rational function f∗ of degree
d so that f∗(τ ) =

∑r
l=1 βlfl(τ ), then f∗ =

∑r
l=1 βlfl.

Proof. Let Zl = {zli}d1
i=1 and Pl = {plj}d2

j=1 be the zeros
and the poles of fl and Z̃ = {z̃i}d1

i=1 and P̃ = {p̃j}d2
j=1 be

the zeros and poles of f∗. We have

f∗(τ ) =
r∑

l=1
βlfl(τ )

⇔
α̃

∏d1
i=1(τ − z̃i)∏d2

j=1(τ − p̃j)
=

∑
l βlαl

∏
i(τ − zli)

∏
k ̸=l,j(τ − pkj)∏r

l=1
∏d2

j=1(τ − plj)

⇔
(

α̃

d1∏
i=1

(τ − z̃i)
)( r∏

l=1

d2∏
j=1

(τ − plj)
)

= (5)

( d2∏
j=1

(τ − p̃j)
)( r∑

l=1
βlαl

d1∏
i=1

(τ − zli)
r∏

k ̸=l

d2∏
j=1

(τ − pkj)
)

(6)

Elements (5) and (6) are polynomials of degree at most
d1+rd2, evaluated at discretization points τ . As τ contains
m distinct points with m > d1+rd2, these two polynomials
must be equal everywhere. Therefore, f∗ =

∑r
l=1 βlfl.

We now present conditions on matrices A and X that
imply that the exact R-NMF AX⊤ is essentially unique.

Theorem 1. Let A ∈ Rm×r and X ∈ Rn×r be of rank r.
Suppose all columns of A are the discretizations of rational
functions Aj for j = 1, 2, . . . , r, of degree (d1, d2) on m
distinct points τ = {τi}m

i=1, with m > d1 + rd2 and τ
not containing poles of the functions Aj. Suppose that for
all sets containing 2 functions or more, there are at least
d2 + 1 unique poles, that is, poles appearing in exactly
one function. Then the exact R-NMF AX⊤ is essentially
unique.

Proof. Let A′, X ′ be such that A′X ′⊤ = AX⊤. As A, X
are of rank r, we know by Lemma 1 that each column
A′

:j can be written as a linear combination of the columns
of A: A′

:j =
∑r

l=1 βlA:l =
∑r

l=1 βlAl(τ ). To be valid, A′
:j

must be the discretization of a rational function of degree
(d1, d2), we name this function A′

j . As m > d1 + rd2,
by Lemma (3), A′

j must be the linear combination of the
rational functions in A: A′

j =
∑

l βlAl.

To avoid the trivial case of permutation and scaling, there
must be at least one A′

:j that is the combination of two
or more columns of A. As all sets {Ai} containing two
functions or more have at least d2 + 1 unique poles, using
Lemma 2 we know that A′

j has denominator degree at least
d2 + 1. This is in contradiction with the fact that A′

j is a
rational function with degree (d1, d2). It is therefore not
possible to find a valid and not trivial A′ so that A′X ′⊤ =
AX⊤ and the factorization AX⊤ is essentially unique.

Corollary 1. Let A ∈ Rm×r and X ∈ Rn×r be of
rank r, with the columns of A obtained through evaluation
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of rational functions of degree (d1, d2) on m distinct points
τ , with m>d1+rd2, and τ not containing poles of functions
in A. If each function has at least

⌈
d2+1

2
⌉

poles distinct
from all other functions, the exact R-NMF Y = AX⊤ is
essentially unique.

Note that the nonnegativity constraint is not necessary for
Theorem 1 and Corollary 1 to hold.

Nevertheless, when using representation like (3), functions
Aj do not have real poles on interval T = [τmin, τmax],
because of the ϵ added to the denominator. This means
that in this case condition “τ not containing poles of
functions in A” is always met.

The conditions of Corollary 1 are generically satisfied,
that is, these conditions will be satisfied with probability
one for generic rational functions (whose coefficients are
generated randomly following a continuous distribution,
e.g., Gaussian). In fact, generically, not even two poles are
the same.

Moreover, it is straightforward to check a posteriori
whether the conditions of Corollary 1 are satisfied for a
given computed factorization.

IV. Algorithms for R-NMF
In this section, we present three different block decompo-
sitions of R-NMF leading to different algorithms.

m

n

AX⊤

1 block

=

m

r n
r

A

X⊤

2 blocks

= A:1

X:1
⊤

+ · · ·+
A:r

X:r
⊤

2r blocks
Fig. 1: Illustration of the three block decompositions.

A. General Nonlinear Least Squares approach (R-NLS)
We substitute in (1) A:j by fτj

from equation (3), and Xij

by C2
ij to express R-NMF in an unconstrained way:

min
h1j ,h2j ,

g1j ,g2j ,C

n∑
i=1

∥∥∥Y:i −
r∑

j=1
fτj (h1j , h2j , g1j , g2j)C2

ij

∥∥∥2
. (7)

This problem can be solved using a standard nonlinear
least squares solver. The same approach for polynomials
has been proposed in [11]. Note however that in the cited
work a compression method is suggested to pre-process the
data and reduce the complexity of the problem, but this is
not possible in our case because rational function are not
linearly parametrizable, that is, they cannot be described
using a linear combination of some basis elements.

B. Using Alternating Nonlinear Least Squares (R-ANLS)
Using all-at-once algorithms as R-NLS to solve NMF
problems may be computationally costly, especially for
large problems. Therefore, most NMF algorithms consider
instead alternating schemes [7],[25],[27],[28]. The problem
is then solved by alternating on A and X considering the

other matrix as fixed, as sketched in Algorithm 1. As fτj

is a nonlinear function, each sub-problem is nonlinear, and
this method is called alternating nonlinear least squares.

Algorithm 1 Alternating Nonlinear Least Squares
function R-ANLS(Y, A, X)

while stopping criterion not satisfied do:

A←argmin
h1j ,h2j ,
g1j ,g2j

n∑
i=1

∥∥∥Y:i−
r∑

j=1
fτj

(h1j , h2j , g1j , g2j)Xij

∥∥∥2
(8)

X←
(

argmin
C∈Rn×r

n∑
i=1

∥∥∥Y:i −
r∑

j=1
A:jC2

ij

∥∥∥2
)2

(9)

return A, X

Problems (8) and (9) are unconstrained and can be solved
using a standard nonlinear least squares solver. Note that
problem (9) is separable in n independent sub-problems,
as the rows of X, are independent (which is not the case
for the rows of A): for all i ∈ {1, · · · , n},

Xi: ←
(

argmin
Ci:∈Rr

∥∥∥Y:i −
r∑

j=1
A:jC2

ij

∥∥∥2
)2

.

C. Using Hierarchical Alternating Nonlinear Least Squares
(R-HANLS)

A popular and effective approach for NMF is the Hier-
archical Alternating Least Squares method (HALS). This
method further decomposes the problem in smaller blocks:
the columns of A/X are updated successively, considering
all the other elements as fixed [7]; see also [15]. Because
of the quadratic and separable structure of the objective
function (that is, the Hessian is diagonal), minimizing (1)
when all variables are fixed except a column of A or X can
be done by projecting the unconstrained minimizer on the
corresponding feasible region. This region is the set Rd,T

τ

of nonnegative rational functions with fixed degrees for A,
or the set Rn

+ of nonnegative vectors for X.

The unconstrained minimizer can easily be found for
columns of A and X by cancelling the gradient. Algo-
rithm 2 sketches this approach, using [·]S for the projection
on set S. The projection on Rn

+ is a simple thresholding
operation, setting all negative values to 0, while the pro-
jection on Rd,T

τ is not trivial and discussed in the next
section. Moreover, equation (11) is separable: the value of
Xis can be computed independently from Xjs, but this is
not the case for A:s in equation (10), as the projection is
not separable unlike the thresholding operation.

V.Projection on nonnegative rational functions
As mentioned in Section II, rational functions nonnegative
on a fixed interval T can be described as the ratio of
two polynomials nonnegative on T , with denominator
further imposed to be nonzero on T . Let Pd be the set
of polynomials of degree d, Pd,T

+ be the set of polynomials
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Algorithm 2 R-HANLS
function R-HANLS(Y, A, X)

while stopping criterion not satisfied do
for A:s ∈ A do

A:s ←
[

Y X:s −
∑

j ̸=s A:j(X:j)⊤X:s

∥X:s∥2

]
Rd,T

τ

(10)

for X:s ∈ X do

X:s ←
[

Y ⊤A:s −
∑

j ̸=s X:j(A:j)⊤A:s

∥A:s∥2

]
Rn

+

(11)

return A, X

of degree d nonnegative on interval T , Pd,T
++ be the set of

polynomials of degree d positive on interval T , and z be the
result of evaluating a function z(t) on discretization points
τ = {τi}m

i=1, z = z(τ ). Projecting z on rational functions
nonnegative on T is therefore equivalent to solving

min
h∈Pd1,T

+ , g∈Pd2,T
++

∥∥z − h(τ )
/

g(τ )
∥∥2

2. (12)

A. Existing approaches to approximate (nonnegative) ra-
tional functions

Solving problem (12) is not trivial, even when removing
the nonnegativity constraints. Though many works exist in
the unconstrained case, most of them consider the infinity
norm in (12) [36], and there are very few works imposing
nonnegativity: to the best of our knowledge this problem
is only addressed in [32], [34], for the infinity norm.

In the unconstrained case, many works are based on
another representation of rational functions, namely the
Barycentric representation which is as follows

f(t) =
d∑

i=1

ωizi

t− αi

/
d∑

i=1

ωi

t− αi
. (13)

The advantage of this representation is that the basis
used, that is, the sets of {αi}d

i=1, can be adapted as
the algorithm proceeds to avoid numerical problems at
nonsmooth points [12], or Froissart doublets [30]. More-
over, when t → αi, then f(t) → zi, which allows one to
optimize only the ωi’s. The most common method using
this representation is the adaptive Antoulas–Anderson
(AAA) algorithm [30]. This method gradually increases
the size of the basis by judiciously choosing the αi points
to be added. It does not seek to optimise a particular
norm, but is a good initialization for future optimisation
[9], [12], [21], [24]. On the other hand, even if it is not
presented as such, one can see Vector Fitting [16] as using
the same representation. In this method, the whole basis
is chosen at once. Then one optimises iteratively, using
at each iteration the poles of the denominator found at
previous iteration as new basis.

In both methods, once the basis is chosen, the numerator h
and denominator g of f are found by optimizing ∥zg(τ )−

h(τ )∥ rather than ∥z − h(τ )/g(τ )∥. These methods give
good results, but are difficult to use in the context of
nonnegative rational functions, because nonnegativity is
difficult to express in Barycentric form.

Many methods try to get rid of the denominator which is
difficult to optimise. Thus, [33] but also [29] and [37] have
proposed to solve the problem iteratively, using a guess of
the denominator, gk−1, improved throughout iterations,
by solving

(gk, hk) = argmin
g∈Pd2 ,h∈Pd1

∥∥∥zg(τ )− h(τ )
gk−1(τ )

∥∥∥. (14)

In the same idea, a special case of the RKFIT (Rational
Krylov fitting) algorithm from [4] focuses on finding a good
denominator by solving the following problem iteratively:

min
gk∈Pd2

∥∥∥zgk − h′(gk; z, gk−1)
gk−1

∥∥∥, (15)

where h′(gk; z, gk−1) = argmin
h

∥∥∥ zgk−h
gk−1

∥∥∥. The problem in

h when gk is fixed has an analytic solution (the solution
of a similar problem is presented in Appendix A, in the
explanation of RKFIT+). This reformulation allows for
fewer parameters to be optimised at each iteration.

When using the infinity norm in (12), if g(τi) is positive
for all i, the problem can be rewritten as:

min
h∈Pd1 ,g(τi)>0,u

u s.t.
{

zig(τi)− h(τi) ≤ ug(τi)
h(τi)− zig(τi) ≤ ug(τi)

. (16)

If we fix u, then the problem is a feasibility problem, and
therefore it is possible to perform a bisection search on u
to find the solution. This is the method used in [32], [34] to
solve the problem on nonnegative rational functions. The
numerator and the denominator of the rational functions
are modeled using sum of squares, which makes problem
(16) a semidefinite programming feasibility problem for u
fixed.

Finally, using equation (3), it is possible to see problem
(12) as a nonlinear least squares problem and to solve it
using standard methods [36].

B. Proposed projection methods
Let us present five approaches to solve the projection
problem onto the set of nonnegative rational functions.
Some details of implementation are omitted and presented
in Appendix A to lighten the text. All these approaches
are approximations, that is, they are not guaranteed to
converge to a globally optimal solution. Therefore, we will
analyze in Section V-C their average behavior in several
situations. The reason is that solving this problem is,
unfortunately, believed to be NP-hard in general. Indeed,
minimizing rational functions is NP-hard in general [23],
and to the best of our knowledge there does not exist
a polynomial-time algorithm to perform the projection



6

on rational functions (with or without the nonnegativity
constraint).

Least Squares: Using equation (3), the projection prob-
lem can be rewritten in an unconstrained way and solved
using a standard nonlinear least squares solver, as in R-
NLS or R-ANLS. This is the approach used in [20].

Alternating Least Squares: The projection problem
can also be divided in two blocks, and solved using a BCD
approach. Finding the best possible numerator when the
denominator g is fixed is a convex problem on polynomials:

argmin
h∈Pd1,T

+

∥∥∥∥z − h(τ )
g(τ )

∥∥∥∥2
. (17)

This problem is described in more details in Appendix A.

When the numerator h is fixed, finding the best de-
nominator is a challenge as the problem is not convex.
Actually this problem is a special case of the projection
on rational functions, when the degree of the numerator is
equal to 0. So it can also be solved using nonlinear least
squares solvers via equation (3). As this problem has fewer
variables than the original one, it is reasonable to assume
that it will be solved faster.

Algorithm 3 Alternating Least Squares
Input: z: signal to approximate, d1, d2: degree of the
numerator/denominator, τ : discretization points, g: initial
guess of the denominator, tol: tolerance of the algorithm

1: function Alternating LS(z, d1, d2, τ , g, tol)
2: while errprev−err

err >tol do
3: compute h as in problem (17)
4: g = argmin

g∈Pd2,T
++

∥z − h(τ )/g(τ )∥2.

5: f(τ ) = h(τ )/g(τ )
6: errprev = err, err = ∥z − f(τ )∥2

7: return f(τ )

Conic: This method is inspired by equation (14). From a
given estimate of the denominator g̃, we aim to recover
the rational function by optimizing a problem without
variables at the denominator. The problem we aim to solve
is not the same as in (14), and is motivated in Appendix A.
Indeed, we aim to approximate z by f(τ ) = h(τ )

g̃(τ )+δ(τ ) ,
with g̃ ∈ Pd2,T

++ fixed, by solving

argmin
h∈Pd1,T

+ ,δ∈Pd2,T
+

∥∥∥∥zg̃(τ ) + zδ(τ )− h(τ )
g̃(τ )

∥∥∥∥2
. (18)

Note that the parametrization f(τ ) = h(τ )
g̃(τ )+δ(τ ) allows

us to represent any rational function nonnegative on a
fixed interval, and that the cost function of problem
(18) is an upper bound of the cost function of problem
(12). Moreover, if z is a nonnegative rational function of
appropriate degrees, for any g̃ it is possible to find h and
δ such that the cost function (18) is equal to zero and
z = f(τ ).

The choice of g̃ is crucial for this algorithm: the smaller
is δ, and therefore the closer is g̃ from the denominator of
the rational function, the closer are (18) and (12). Thus
problem (18) is solved iteratively, updating g̃ as g̃+δ. Note
that to avoid to increase g̃ indefinitely, it is normalized so
that g̃(τm) = 1 before a new iteration, without loss of
generality. This method is sketched in Algorithm 4.

Algorithm 4 Conic
Input: z: signal to approximate, d1, d2: degree of the
numerator/denominator, τ : discretization points, g̃: initial
guess of the denominator, tol: tolerance of the algorithm

1: function Conic(z, d1, d2, τ , g̃, tol)
2: while nb >tol and errprev−err

err >tol do
3: compute h and δ as in problem (18)
4: g = g̃ + δ
5: f(τ ) = h(τ )

g(τ )
6: nb = ∥g̃ − g/g(τm)∥2; g̃ = g/g(τm)
7: errprev = err; err = ∥z − f(τ )∥2

8: return f(τ )

RKFIT+: This approach is inspired from the RKFIT
method presented in [4]. To find a good denominator, we
consider (18) and replace h(τ ) by its best value when δ
and g̃ are considered as fixed, without taking into account
the nonnegativity constraint. This means that we consider
h′(g̃, δ, z, τ ) = argminh∈Pd1

∥∥z + zδ(τ )−h(τ )
g̃(τ )

∥∥ instead of h.
As the nonnegativity constraint is omitted, this problem
can be solved analytically using matrix operations (see
Appendix A). This leads us to the following problem:

argmin
δ∈Pd2,T

+

∥∥∥∥z + zδ(τ )
g̃(τ ) −

h′(g̃, δ, z, τ )
g̃(τ )

∥∥∥∥2
. (19)

To find a good projection on the set of nonnegative rational
functions we iterate over instances of problem (19). An
iterative scheme is useful because problem (19) relies on
the fixed parameter g̃. The pseudo-code of RKFIT+ is
quite similar to the one of Conic (Algorithm 4). Lines 5
and 7 are deleted, and lines 3 is replaced by

3: compute δ as in problem (19)
Moreover, problem (17) is solved after the while loop to
recover the numerator.

LinProj: This approach has been inspired from [32], [34].
In this case we consider the infinity norm instead of the
squared norm, to express the problem as a bisection search
over feasibility problems on polynomials as in (16). These
feasibility problems can even have linear constraints if we
impose h and g to be nonnegative on points τi ∈ τ instead
of being nonnegative on the interval T (this is different
from what is done in [32], [34]). The feasibility problem is
then:

min
h(τi)≥0,g(τi)≥1

0 s. t.
{

zig(τi)− h(τi) ≤ ug(τi)
h(τi)− zig(τi) ≤ ug(τi)

∀i, (20)

and a bisection algorithm is sketched in Algorithm 5.
Note that g is prevented from containing values smaller
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than 1 at points τi without loss of generality, to simplify
the feasibility problem, preventing [−ug(τi), ug(τi)] from
being too small.

Algorithm 5 LinProj
Input: z: signal to approximate, d1, d2: degree of the
numerator/denominator, τ : discretization points, tol: tol-
erance of the algorithm

function LinProj(z, d1, d2, τ , tol)
umax = maxi

{
zi −

∑m
s=1 zs/m

}
; umin = 0

while umax − umin > tol do
umed = (umax + umin)/2
if problem (20) on umed is feasible then

umax = umed
else

umin = umed
Find h, g a feasible solution of (20) using umax
return h(τ )

g(τ )

C. Comparison of the projection methods
We now compare these five proposed projection ap-
proaches. Algorithms have a tolerance tol of 10−8. We
consider two sets of inputs:

• The signals to project are the discretization of non-
negative rational functions, whose numerator and
denominator degrees are d1 and d2, respectively. An
exact recovery is thus possible (exact).

• The signals to project are the same as in previous case
except that we add a Gaussian noise with noise level
20dB (noisy).

Unless specified otherwise, the rational functions have de-
gree (16, 16), with 250 discretization points equally spaced
on [−1, 1]. Fig. 2 displays the results. The quality of the
final projection is computed as the squared norm of the
difference between the signal to project and the computed
projection, divided by the squared norm of the signal
to project. The first observation from this figure is that
no method outperforms all others. Indeed, even though
RKFIT+ seems quite appropriate for "exact" data, as it
obtains the lowest relative error and is among the fastest,
it is quite inaccurate for noisy data. On the contrary,
Least Squares and Alternating Least Squares provide the
best projections on noisy data, but they obtain high
errors when there is no noise. When comparing these two
approaches, the Least Squares appears to be the best as
it is significantly faster and obtains more accurate results.
Therefore, we do not consider Alternating Least Squares in
what follows. Linproj generally obtains low relative errors,
but sometimes it is unable to find a good candidate when
there is noise. Finally, the Conic approach is not very
accurate compared to the others, but it is the fastest.

We conclude from these experiments that Least Squares
and RKFIT+ are the more promising projection methods,
but they are not always better than the others, and do not
outperform them significantly.
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Fig. 2: Comparison of the projections. The results are av-
eraged over 10 trials. The plots represent the time needed
for computations (left) and the relative error (right).

VI. Performance and Comparison of
R-NMF algorithms

In this section, we first briefly discuss the computational
complexity of the proposed algorithms. Then, we com-
pare the R-NMF algorithms presented in Section IV on
purely synthetic datasets to analyze their reconstruction
ability and their efficiency. After that, the most promising
methods are compared to standard HALS and HALS using
polynomials or splines [18] on semi-synthetic datasets. We
chose to use HALS because it is fast and obtains compara-
ble results in terms of accuracy as other approaches [18].
The methods are also compared on a classification task on
a real dataset: the Indian Pines dataset1.

The least squares solver used for the experimentation is
the Python/SciPy function least_squares2 with default

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes#Indian_Pines

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.least_squares.html
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parameters, which solves the least squares problems using
a trust region reflective algorithm [6].

The code is available from https://codeocean.com/
capsule/2977752/tree, along with other codes developed
during the PhD thesis of the first author.

A. Algorithmic complexity of the methods
Let the following reasonable assumption apply: r < d <
n, m, where d is the number of degrees of freedom of the
used function, e.g., d1 + d2 + 1 for rational functions, the
degree plus one for polynomials, and the number of interior
knots plus two for splines. The number r is the rank of
factorization, n is the number of observations, and m is
the number of discretization points. Let the complexity of
the least squares solver be ls(k) where k is the size of the
Jacobian, and p(k) be the complexity of the projections for
polynomials and splines, where k is the number of variables
to optimize by the algorithm.

We know that an update of HALS for X has complex-
ity O(rmnI), where I is the number of iterations. The
complexities of HALS using polynomials or splines from
[18], and of R-HANLS using least-squares projection, R-
ANLS and R-NLS can also be computed. Their value is
summarized in Table I. Among HALS methods, R-HANLS
is the slowest. Indeed, rational functions are not linearly
parametrizable and m appears in the complexity, unlike for
polynomials or spline, where m is replaced by d which is
significantly lower. Nevertheless, R-HANLS is much faster
than R-ANLS or R-NLS for large datasets.

Method Complexity
HALS O(rmnI)
Poly/splines O(rdnI + rp(d2)I)
R-HANLS O(rmnI + r ls(md)I)
R-ALS O(rmnI + ls(rdmn)I)
R-LS O(ls(rmn(n + d)))

TABLE I: Computational complexity of the various NMF
and R-NMF methods.

B. Datasets
We use synthetic datasets generated as follows. We gen-
erate matrix X ∈ Rn×r

+ randomly, following a Dirichet
distribution whose parameters are equal to α = 1/r. The
data provided to the algorithms is Y = AX⊤ + N where
N is additive Gaussian noise with known Signal to Noise
Ratio (SNR). The matrix A is generated in two ways:

• a "purely synthetic" A which is the discretization of
r nonnegative rational functions. The functions are
generated as follows. We first create a nonnegative
polynomial of degree d1 that is perturbed using a ra-
tional function of degree (1, 2). This creates a smooth
signal with some peaks. The signal is then projected
on the set of nonnegative rational functions of degree
(d1, d2). In this situation, it is therefore possible to
find the exact solution of the problem.

• a "semi-synthetic" A whose columns are the real
reflectance signals of Adulania, Clinochlore, Hyper-
sthene, Olivine, Spessatine, Andesine, Celestine and
Kaolinite evaluated on 414 nonequally spaced points.
These signals are showed on Fig. 3 (left) and come
from the U.S. Geological Survey (USGS) database
[26]. These signals are not particularly close to ra-
tional functions, but they are generally smooth even
though they present some peaks. If r is smaller than
8, we only consider the first r signals in the list.

In all our experiments we impose methods to have the
same number of degrees of freedom (except standard
HALS which operates over unstructured nonnegative vec-
tors). This means that if we use rational functions with
degree (d1,d2), we use polynomials of degree d1 + d2, and
splines of degree 3 with d1 + d2− 1 interior knots. Let Ak,
Xk denote the factors obtained at iteration k. Accuracy is
evaluated trough the relative residue computed as

∥AX⊤ −AkXk⊤∥
∥AX⊤∥

. (21)

Note that this evaluation is performed on AX⊤, that is,
the data before adding the noise, and therefore the quality
is evaluated on data not provided to the algorithm. The
stopping criterion of the algorithms is the following:

sck = ∥Y −Ak−1Xk−1⊤∥ − ∥Y −AkXk⊤∥
∥Y −AkXk⊤∥

< 10−12. (22)

We also impose algorithms to have a maximum running
time. Methods based on HALS are limited to 200 seconds,
while R-ANLS and R-NLS are limited to 1000 seconds.
These times have been inspired from Table I, and selected
to be not too important, while allowing the algorithm to
converge in most cases, as we will see in the experiments.

We also report the quality of factorizations by computing
the Signal to Interference Ratio (SIR) between the com-
puted A′ and the original A, proposed in [8]. If A contains
n columns, the SIR is:

SIR(A′, A) = 10
n

n∑
i=1

log
( ∥A′

:i∥2
2

∥A:i −A′
:i∥2

2

)
.

The larger the SIR, the closer A′ is to A. As the factors can
be permuted without loss of generality, we first compute
the best permutation of the columns of of A′ before
computing the SIR.

In what follows, each test is performed 10 times, using
different initializations. To summarize the performance, in
Figures 4 and 8, we compute the minimal and the maximal
value obtained for each criterion, and put a marker at
the mean value of the criterion. If the graph shows the
evolution of two criteria with respect to a parameter (like
n, m, d or r), only the mean value is presented to improve
readability. We consider that an algorithm converged at
iteration k if sck−sco

sck < 10−3 for all o ≥ k. This is used to
evaluate the time needed by each algorithm to converge.
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Fig. 3: Left: Considered real reflectance signals. Right:
Example of mixing of those signals with noise level 20dB.
Each of the five signals is a column of Y .

C. Initialization of the projections in R-HANLS
To get the best out of R-HANLS with the different projec-
tions, we use the fact that the last iterates of R-HANLS
tend to become close to each other. Therefore, we exploited
knowledge from previous iterations, as suggested in [20]:

• Least Squares: use the previous projection as a start-
ing point of the least squares solver.

• Conic and RKFIT+: use the previously obtained
denominator as first guess.

• LinProj: use a potentially better umax = maxi{|zi −
fprev(τi)|} .

Moreover, the tolerance of the projection methods is de-
creased progressively from 10−2 to 10−8, and Conic and
RKFIT+ are limited to one iteration. This leads to accu-
rate results in a reasonable time. Nevertheless, we noted
during experiments that using knowledge from previous
iterations is particularly beneficial for Least Squares.

D. Purely synthetic datasets
Let us present the result with and without noise.

Case without noise: Although there is no noise to
filter, it is useful to analyze the data and find the factors
behind them. By the uniqueness property of R-NMF in
Section III, we can hope that the methods based on
rational functions are able to recover the original signals.
We observe on Fig. 4 that even though the SIR of methods
using rational functions are on average better than the SIR
recovered by HALS (which uses any nonnegative vector
to represent each column of A), this is not always the
case, and there is much more variability on the results
when using rational functions than when using HALS.
Nevertheless, the best SIR obtained by methods using
rational functions are much better than the best SIR
obtained when using HALS (except for R-HANLS using
LinProj projection).

Moreover, HALS obtains the best residue, which is ex-
pected as it has more degrees of freedom. It is therefore
difficult to beat HALS in terms of pure data approxima-
tion when data is noiseless. Among methods using rational
functions, we can see that the LinProj projection is not
appropriate; this method is therefore not explored further
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Fig. 4: Summary of performance for varying n = [20, 100],
d = [6, 10] and r = [5, 10], in the presence of noise.
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Fig. 5: Performance for varying n. Data is not noisy.
Average for d = [6, 10], r = [5, 10].

in what follows. The other R-NMF methods have simi-
lar performances, except in terms of computation time.
Nevertheless, it seems that R-ANLS is the most accurate
method in terms of obtained residue, while R-HANLS-
based methods are faster.

We observe on Fig. 5 that when the number of observations
n is small (n = 20), R-NLS is able to recover the original
signals, as this method obtains a low residue and a high
SIR. However, it is unable to do so when the number of
observations increases. We may wonder if this bad result
is due to a too tight time constraint, which prevents the
algorithm from converging, but even by running the algo-
rithm for 1h (that is, three times longer), the performance
did not improve significantly. R-ANLS is the most robust
method among methods using rational functions when n
changes as its residue is not impacted by this change,
unlike other R-NMF methods.

Case with noise: When noise is added to the dataset,
NMF is also useful to filter noise in the data, which can be
evaluated through the relative residue (21): a low relative
residue means a good ability to filter the noise. Fig. 6
shows the average results for low and high noise levels. We
observe that the performance of all algorithms deteriorates
when the level of noise increases, as expected. Using the
Conic or RKFIT+ projections in R-HANLS does not work
well when the noise level is high. The noise level has a
high impact on the residue of HALS, which means that it
does not perform well at filtering the noise on the data.
However, the similarity of the recovered factors to the
original ones is not much impacted by the noise level and
stays around 15 dB, which is not a very good SIR. R-
HANLS LS and R-ANLS obtain the best performances
when the noise level is high, both in terms of SIR and
residue. Although their SIR is also around 15dB, meaning
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Fig. 6: Performance for different noise levels. Average for
n = [20, 100], d = [6, 10] and r = [5, 10].
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Fig. 7: Performance for varying n, in the presence of noise.
Average for d = [6, 10] and r = [5, 10].

that the recovered factors are not so similar to the original
ones, the obtained factors are able to model the original
data with a small residual, around 0.2. We see on Fig. 7
that increasing n, the number of observations, has a very
different impact depending on the used methods: it makes
R-NLS perform worse, but it helps the other methods,
especially HALS.

E. Semi-synthetic datasets
We saw in previous sections that using rational functions
in NMF when data is composed of rational functions can
help significantly the algorithm, but is very sensitive to
initialization. The use of rational functions is especially
relevant for difficult problems, that is, for high noise levels
and when only a few observations are available.

Let us analyze the performance of the algorithms in the
semi-synthetic case, when the noise level is high (20dB)
and the number of observations is low (n = 20). This
will allow us to validate whether using rational function
is beneficial in such situations. We compared the methods
to HALS as before, but also to HALS using polynomials
or splines presented in [18]. We also considered combining
the R-ANLS and the R-HANLS LS methods, to try to
obtain a method obtaining the same quality as R-ANLS
with speed comparable to R-HANLS LS, and to have thus
the best of the two algorithms. When combining these two
approaches, we run one of them until the relative residue
was below 10−2, and we use the result of this first method
as initialization of the second method.

Fig. 8 displays the results. We observe that the R-NMF
methods obtain the smallest residues, and are thus best
to filter the noise. Among these methods, R-NLS obtains

the best SIR, but it is also quite slow despite the small
number of observations. R-ANLS and the combination R-
ANLS/R-HANLS obtain also good SIR values. Note that
the combination is able to obtain accuracy close to the
one obtained by R-ANLS but much faster. The objective
of combining methods is therefore met in this case. HALS
using polynomials or splines also filters well the noise
while HALS has more difficulties. However, all methods
have difficulties to recover the original signals, as the SIR
are low on average for all methods. Fig. 9 shows that
when a small number of signals are mixed, r = 3, some
methods based on rational functions manage to recover a
good approximation of the original signals, but when the
number of original signal increases, to r = 5 or 8, the
recovered signals do not really resemble the original ones,
as illustrated on Fig. 10. We also observe in this figure that
the signals recovered by HALS are highly nonsmooth.

On another hand, changing the degree does not influence
the SIR. However, Fig. 11 shows that choosing a too low
number of degrees of freedom (d = 12) penalizes the algo-
rithms in terms of relative residue, especially when using
polynomials or splines. The fact that rational functions
already obtain good results for d = 12 can be explained
by the fact that rational functions are able to express a
larger variety of shapes than polynomials or splines for
the same number of degrees of freedom. However, this
advantage turns into a drawback when the number of
degrees of freedom is too high. Indeed, the performances of
the methods using rational functions are slightly degraded
for larger degrees, because the algorithm starts to model
the noise. This is the case in particular for R-HANLS
LS and R-ANLS/R-HANLS. Nevertheless, the variability
seems to be reduced in this case (the worst case is better
than when using a lower number of degrees of freedom).
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Fig. 8: Summary of performance on semi-synthetic
datasets.
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Fig. 10: Example of recovered factor A for r = 3 (up) or
8 (down), for HALS (left) or R-NLS (right).
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Fig. 11: Performance for varying degree of freedom (d).

F. Using (R-)NMF for classification
We explore the use of R-NMF in the real problem of Indian
Pines classification. Classification is performed using the
k-nearest-neighbours (KNN) algorithm with k = 5. A
portion of 70% of the data is used for training.

The data is pre-processed by NMF as follows. Let Y ∈
R200×21025 be the dataset, with 21025 observations of
which 6307 should be classified. As the signals are spectra,
it can be assumed that they are close to polynomials,
splines or rational functions. We approximate Y as AX⊤

using NMF, where A contains in its columns sampled
functions (note that there is no knowledge of labels at
this stage). The columns of X are normalized so that
∥X:i∥ = 1. Then the classification is performed on X⊤

instead of Y . The hope is that NMF filters noise in the
data, while limiting the number of factors. We use the R-
HANLS methods for rational functions due to the high
number of observations.

We also considered PCA to do the preprocessing (PCA
does not have a nonnegativity constraint). We also tested
the method of Debals et al. [10] but the results were not
convincing (the accuracy was always below 68%). Perhaps
the size of the dataset is too large, or imposing the degrees
to be always equal is not appropriate for this approach.
Nevertheless, we tested the factorization with rational
functions without nonnegativity constraints, using our R-
HANLS algorithm, with projection onto rational functions

using a least squares solver (Rational). This projection
may not be ideal in this case without nonnegativity, but
it gives an idea of performance. It also shows that our
approach can easily be extended to other sets than the set
of nonnegative rational functions. Methods are tested 10
times over different initializations. The number of degrees
of freedom is 20, and all methods are limited to 100
seconds. The best factorization for each rank is selected
using a K-fold with 5 folds on the 70% of data constituting
the training set. As a base line, we use the result of the
classification on the whole dataset without preprocessing.
It is thus independent of the rank, and corresponds to rank
r = 200.
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Fig. 12: Accuracy of classification using NMF as prepro-
cessing with various factorization ranks.

Fig. 12 shows the accuracy obtained according to the
factorisation rank considered during pre-processing. It
confirms the usefulness of R-NMF since this method ob-
tains the best results when r < 15. For higher rank values,
NMF using splines also obtains very good results, while R-
NMF starts to slightly overfit. We also see that imposing
nonnegativity makes sense, since PCA and Rational which
do not have this constraint obtain the worst results.

Also, using standard NMF improves the baseline only for
ranks higher than 15, while using polynomials or splines
improves accuracy compared to standard NMF, but to a
lesser extent than when using rational functions.

G. Discussion
We observed that R-NMF performs better than other
NMF approaches on semi-synthetic data or real-life data.
A likely explanation is that, as polynomials and splines,
rational functions have less parameters than data points,
and hence some form of noise averaging takes place unlike
for HALS using vectors. Moreover, they generalize poly-
nomials and splines, and are thus able to express a wider
range of shapes, which allows R-NMF to recover more
representative signals. On the other hand, the presented
methods to compute R-NMF do not obtain very satisfac-
tory results when the data are actually rational functions.
Indeed, even when there is no noise, these methods are not
always able to recover the original signals and this despite
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the fact that the factorization to be recovered is unique,
see Section III.

To explain this phenomenon, note that each update of R-
ANLS and R-HANLS is not guaranteed to be optimal
(as in HALS), and these two methods do thus inexact
BCD. But performing inexact BCD was not a problem
for polynomials or splines [17], so this might not be the
only explanation. Another explanation is that the set of
rational functions is not convex, and is not even closed for
addition, so there may be many local minima in which the
algorithms can get stuck, which also explain why R-NMF
is very sensitive to the initialization.

Moreover, R-NMF approaches and especially R-ANLS and
R-NLS are more complex and more resources demanding
than HALS or NMF using splines or polynomials. One
way of investigation to reduce the complexity of the
algorithms is to consider other representations of rational
functions than fractions of polynomials that could be more
accurate, but for which the nonnegativity condition is not
trivial, like barycentric representation [12], [30] or sum of
fractions [16], which is left for future works.

Furthermore, the methods presented in this paper can be
extended to a wider range of rational functions where
the numerator and the denominator are not imposed
to be nonnegative polynomials, but can be any nonneg-
ative function. To use least-squares based methods, a
parametrization of the nonnegativity of the used functions
is necessary. If an R-HANLS approach is chosen, the
only necessity is that the projection exists. This means,
for the Least Squares or the Alternating Least Squares
projection, that a parametrization of the nonnegativity
of the used functions exists. For Conic projection, a
description of the nonnegativity constraint of the used
functions must exist (without caring if it is the numerator
or the denominator). RKFIT+ requires an operator h′

computing the best numerator when the denominator is
fixed (possibly neglecting the nonnegativity). Finally, the
LinProj projection requires the functions that are used to
be linearly parametrizable, in order to keep the problem
linear. This highlights the many existing possibilities when
performing R-NMF.

VII. Conclusion

We introduced R-NMF, a factorization model using non-
negative rational functions to unmix sampled signals, and
presented three approaches to solve the problem. When
comparing with standard NMF or with NMF over polyno-
mials or splines, we found that the use of rational functions
can outperform existing methods, for synthetic datasets
and also for a real life dataset, at the cost of an increase
in computational time for large-scale data and greater
sensitivity to initialization. This better reconstruction is
probably due to the wider range of representation of
rational functions. Comparing R-NMF and standard NMF
on other applications is a topic of further research.

From our results, it appears that R-HANLS obtains on
average worse results than R-ANLS. On an other hand, R-
NLS is able to obtain good results on very small problems,
but slows down significantly when the problem size in-
creases and has difficulties to converge. Moreover, R-NLS
is resource demanding, as is R-ANLS but to a lesser extent.
Therefore, we recommend to use R-NLS only for very small
problems, when n < 50 for example. For medium scale
problems, R-ANLS is accurate and not too slow (when
n < 1000). Finally, for even larger problems, R-HANLS
is more appropriate as it is much less computationally
demanding. When possible, it should be initialized by a
few iterations of R-ANLS to improve performances.

Further works on R-NMF could include in particular
developing and improving algorithms, for example by
combining the presented methods (see [19]), or by using
other representations of rational functions. Note that the
proposed methods can in principle be used for rational
functions in the broadest sense, that is, for the ratio of
two non polynomials functions, which opens the way for
more flexible NMF models.

Appendix

We describe the projection methods in more details.

Least Squares: we use the least_squares method of
python, provided with the jacobian of the cost function,
with default parameters. It therefore solves the problem
using trust region reflective algorithm. The algorithm
is stopped when either the cost function is not enough
improved anymore, or the iterates are too close from each
others, or the norm of the gradient is very small.

Alternating Least Squares: problem (17) is as a
conic problem. Indeed, using Markov-Lukacs theorem,
nonnegative polynomials can be expressed using sum of
squares of polynomials which can be expressed using
positive semidefinite matrices [5]. Therefore, problem (17)
can be rewritten using appropriate matrices Vτ (g) a
Vandermonde-like matrix taking into account the known
denominator, and R the matrix recovering the coefficients
of the polynomial from the positive semi-definite matrices.
R is built using Gram matrices ([18]). Let Sd

+ be the set
of positive semidefinite matrices in Rd×d. We have

min
(S1,S2)∈S

d1
2 +1

+ ×S
d1
2

+

∣∣∣∣∣
∣∣∣∣∣z − Vτ (g)R

[
vec(S1)
vec(S2)

] ∣∣∣∣∣
∣∣∣∣∣
2

. (23)

Problem (23) can be compressed using the singular value
decomposition of Vτ (g) = UΣW ⊤. It can be proved that
using Ṽ = ΣW ⊤ and z̃ = U⊤z leads to the same
minimization problem, to one constant. It is solved using
Mosek 9.2 [1]. The problem of finding the best denomina-
tor is solved using the same solver as for Least Squares.
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Conic: A way to bypass the division difficulty is to
consider the modification suggested in [3] on which we add
nonnegativity constraints:

min
h∈Pd1,T

+ , g∈Pd2,T
+ , g(τm)=1

∣∣∣∣∣∣∣∣zg(τ )− h(τ )
g̃(τ )

∣∣∣∣∣∣∣∣2
(24)

where g̃ ∈ Pd2,T
+ is fixed so that g̃(τm) = 1. This equation

is equivalent to (12) when g(τ ) = g̃(τ ) > 0. It transforms
the problem into a simpler problem on polynomials.

The normalisation of g is important to avoid the trivial
solution g = h = 0, and can be done without loss of
generality as using αh and αg leads to the same rational
function f = h/g. Unfortunately, even with normalization,
this approach leads to poor reconstruction results, even
when input z is exactly a discretization of a nonnegative
rational function. We observed that the error is often much
smaller on (24) than on (12). For example, suppose that
g(τi) and h(τi) are very small and g̃(τi) = 1. In this case,
zig(τi)−h(τi)

g̃(τi) can be much smaller than zi− h(τi)
g(τi) . Adding a

regularization term on the cost function λ∥h(τ )− g̃(τ )∥2

with various λ ≥ 0 allows to reduce the problem but
not in a sufficient way. We therefore slightly modify the
approach and approximate z by f(τ ) = h(τ )

g̃(τ )+δ(τ ) , where
g ∈ Pd1,T

+ , g̃, δ ∈ Pd2,T
+ and g̃ is fixed. So ∥z − f(τ )∥2 =∥∥∥∥zg̃(τ ) + zδ(τ )− h(τ )
g̃(τ ) · g̃(τ )

g̃(τ ) + δ(τ )

∥∥∥∥2
. (25)

As δ and g̃ are nonnegative, 0 < g̃(τ )
δ(τ )+g̃(τ ) ≤ 1. The cost

function of (26) is thus an upper bound of the cost function
of problem (12):

min
h∈Pd1,T

+ ,δ∈Pd2,T
+

∣∣∣∣∣∣∣∣z + zδ(τ )− h(τ )
g̃(τ )

∣∣∣∣∣∣∣∣2
. (26)

Solving problem (26) ensures to have a rational function
that leads also to a low cost in problem (12), which was
not the case when solving (24). It can be solved in a similar
way as (23). Using appropriate matrices Vτ (g̃, z) and Rwe
have:

min
(S1,S2,D1,D2)∈

S
d1
2 +1

+ ×S
d1
2

+ ×S
d2
2 +1

+ ×S
d2
2

+

∥∥∥∥∥z+Vτ (g̃, z)R


vec(S1)
vec(S2)
vec(D1)
vec(D2)


∥∥∥∥∥

2

. (27)

Problem (27) can be compressed, using the singular value
decomposition of Vτ (g̃, z) = UΣW ⊤, with Ṽ = ΣW ⊤ and
z̃ = U⊤z. This problem is solved using Mosek 9.2 solver.

RKFIT+: operator h′ from (19) can be solved analyt-
ically using matrix V1 such that h(τ )

g̃(τ ) = V1h, where h is
the coefficient vector of h. Problem becomes:

h′(g̃, δ, z, τ )
g̃(τ ) = V1 argminh

∥∥∥z + zδ(τ )
g̃(τ ) − V1h

∥∥∥2
. (28)

The solution of (28) can be expressed using V †
1 the pseudo-

inverse of V1 as: h′(g̃,δ,z,τ )
g̃(τ ) = V1V †

1

(
z + zδ(τ )

g̃(τ )

)
.

Similarly, we can define V2 so that zδ(τ )
g̃(τ ) = V2δ, where

δ is the coefficient vector of δ. Problem (19) is then
min

δ∈Pd2,T
+
∥(I − V1V †

1 )(z + V2δ)∥2. This problem can be
compressed, using SVD decomposition of (I − V1V †

1 )V2:
UΣW ⊤. The cost becomes ∥U⊤(I − V1V †

1 )z + ΣW ⊤δ∥2.
The problem can then be solved using Mosek 9.2.

LinProj: this problem is solved using Mosek 9.2. This
solver sometimes consider a problem as feasible when
the constraint is violated by a value smaller than 10−6.
To avoid this small violation to lead to a huge value of
maxi

(∣∣zi − h(τi)
g(τi)

∣∣), g(τ ) is imposed to be greater than 1.
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